WebOct 13, 2024 · The proposed novel architecture outperforms other classification models while addressing the issue of gradient explosion. Our approach reaches near perfect accuracy of 99.8% and 100% for two separately available Retinal SD-OCT data-set … WebFeb 4, 2024 · A few examples of classification problems are Spam Email detection, Cancer detection, Sentiment Analysis, etc. To understand more about classification problems you can go through this link. Table of Content. Understanding the problem statement. About the dataset. Load essential Python Libraries. Load Training/Test datasets. Data Preprocessing
Deep learning is effective for the classification of OCT ... - PubMed
WebThe reported method consisted of the InceptionV3 network pretrained on the ImageNet dataset, then fine-tuned on a set of target OCT images. We extended this architecture by utilizing several classifiers in an ensemble fashion. Our method consists of four CNNs widely used CNNs in image classification tasks (VGG16, ResNet50, Xception, InceptionV3). WebThis multimodal dataset features physiological and motion data, recorded from both a wrist- and a chest-worn device, of 15 subjects during a lab study. The following sensor modalities are included: blood volume pulse, electrocardiogram, electrodermal activity, electromyogram, respiration, body temperature, and three-axis acceleration. shannyland
mr7495/OCT-classification - Github
WebMar 29, 2024 · This dataset is another one for image classification. It consists of 60,000 images of 10 classes (each class is represented as a row in the above image). In total, there are 50,000 training images ... WebAbstract Online assessment of the tumor pathology during surgery is an important task to give feed-back to the surgeon who can be more liberal or conservative in the resection based on the input. While there are methods that perform metabolomics-based online tumor grade prediction, their performance and model complexities are limited by the small … WebWe further improve the performance of the depthwise separable convolution by reweighting the output feature maps of the first convolution layer with a so-called squeeze-and-excitation block. We compared the proposed method with five representative models on two experimental settings of the Google Speech Commands dataset. pom puppies for sale in sc